ITERATED LAVRENTIEV REGULARIZATION FOR NONLINEAR ILL-POSED PROBLEMS
نویسندگان
چکیده
منابع مشابه
Iterated Lavrentiev Regularization for Nonlinear Ill-posed Problems
We consider an iterated form of Lavrentiev regularization, using a null sequence (αk) of positive real numbers to obtain a stable approximate solution for ill-posed nonlinear equations of the form F(x)= y, where F : D(F)⊆ X→ X is a nonlinear operator and X is a Hilbert space. Recently, Bakushinsky and Smirnova [“Iterative regularization and generalized discrepancy principle for monotone operato...
متن کاملNonlinear regularization methods for ill-posed problems
In this paper we consider nonlinear ill-posed problems with piecewise constant or strongly varying solutions. A class of nonlinear regularization methods is proposed, in which smooth approximations to the Heavyside function are used to reparameterize functions in the solution space by an auxiliary function of levelset type. The analysis of the resulting regularization methods is carried out in ...
متن کاملRegularization Methods for Ill-Posed Problems with Monotone Nonlinear Part
We present regularization methods for solving ill-posed Hammerstein type operator equations under weaker conditions than in earlier studies such as [13]. Our semilocal convergence analysis is based on majorizing sequences. Numerical examples where the new convergence criteria are satisfied but the old criteria are not satified are also presented at the end of the study. AMS (MOS) Subject Classi...
متن کاملA modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations
Recently, a new iterative method, called Newton-Lavrentiev Regularization (NLR) method, was considered by George (2006) for regularizing a nonlinear ill-posed Hammerstein-type operator equation in Hilbert spaces. In this paper we introduce a modified form of the NLR method and derive order optimal error bounds by choosing the regularization parameter according to the adaptive scheme considered ...
متن کاملExpanding the Applicability of a Newton-lavrentiev Regularization Method for Ill-posed Problems
We present a semilocal convergence analysis for a simplified NewtonLavrentiev regularization method for solving ill-posed problems in a Hilbert space setting. We use a center-Lipschitz instead of a Lipschitz condition in our convergence analysis. This way we obtain: weaker convergence criteria, tighter error bounds and more precise information on the location of the solution than in earlier stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The ANZIAM Journal
سال: 2009
ISSN: 1446-1811,1446-8735
DOI: 10.1017/s1446181109000418